Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.388
Filtrar
1.
Ups J Med Sci ; 1292024.
Artigo em Inglês | MEDLINE | ID: mdl-38571883

RESUMO

The Grey allele in horses is causing premature hair greying and susceptibility to melanoma. The causal mutation is a 4.6 kb tandem duplication in intron 6 of the Syntaxin 17 gene. A recent study demonstrated that the most common allele at the Grey locus (G3) involves three tandem copies of this sequence, whilst a more rare allele (G2) has two tandem copies and the wild-type allele (G1) only one copy. The G3 allele is causing fast greying and high incidence of skin melanoma, whereas the G2 allele is causing slow greying and no obvious increase in melanoma incidence. Further somatic copy number expansion has been documented in melanoma tissue from Grey horses. Functional studies showed that this intronic sequence acts as a weak melanocyte-specific enhancer that becomes substantially stronger by the copy number expansion. The Grey mutation is associated with upregulated expression of both Syntaxin 17 and the neighbouring NR4A3 gene in Grey horse melanomas. It is still an open question which of these genes is most important for the phenotypic effects or if causality is due to the combined effect of upregulation of both genes. Interestingly, RNAseq data in the Human Protein Atlas give support for a possible role of NR4A3 because it is particularly upregulated in human skin cancer, and it belongs to a cluster of genes associated with skin cancer and melanin biosynthesis. The Grey mutation and its association with melanoma provide a possibility to study the path to tumour development in numerous Grey horses carrying exactly the same predisposing mutation.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/veterinária , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/veterinária , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Mutação , Cabelo/metabolismo , Cabelo/patologia
2.
Nat Commun ; 15(1): 2328, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499530

RESUMO

Cornified skin appendages, such as hair and nails, are major evolutionary innovations of terrestrial vertebrates. Human hair and nails consist largely of special intermediate filament proteins, known as hair keratins, which are expressed under the control of the transcription factor Hoxc13. Here, we show that the cornified claws of Xenopus frogs contain homologs of hair keratins and the genes encoding these keratins are flanked by promoters in which binding sites of Hoxc13 are conserved. Furthermore, these keratins and Hoxc13 are co-expressed in the claw-forming epithelium of frog toe tips. Upon deletion of hoxc13, the expression of hair keratin homologs is abolished and the development of cornified claws is abrogated in X. tropicalis. These results indicate that Hoxc13-dependent expression of hair keratin homologs evolved already in stem tetrapods, presumably as a mechanism for protecting toe tips, and that this ancestral genetic program was coopted to the growth of hair in mammals.


Assuntos
Queratinas Específicas do Cabelo , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/metabolismo , Pele/metabolismo , Cabelo/metabolismo , Queratinas/genética , Queratinas/metabolismo , Anfíbios , Mamíferos/metabolismo
3.
Environ Sci Technol ; 58(13): 5739-5749, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38456395

RESUMO

Epidemiological studies have demonstrated the embryonic and developmental toxicity of plasticizers. Thus, understanding the in utero biotransformation and accumulation of plasticizers is essential to assessing their fate and potential toxicity in early life. In the present study, 311 infant hair samples and 271 paired meconium samples were collected at birth in Guangzhou, China, to characterize fetal exposure to legacy and emerging plasticizers and their metabolites. Results showed that most of the target plasticizers were detected in infant hair, with medians of 9.30, 27.6, and 0.145 ng/g for phthalate esters (PAEs), organic phosphate ester (OPEs), and alternative plasticizers (APs), and 1.44, 0.313, and 0.066 ng/g for the metabolites of PAEs, OPEs, and APs, respectively. Positive correlations between plasticizers and their corresponding primary metabolites, as well as correlations among the oxidative metabolites of bis(2-ethylhexyl) phthalate (DEHP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), were observed, indicating that infant hair retained the major phase-I metabolism of the target plasticizers. While no positive correlations were found in parent compounds or their primary metabolites between paired infant hair and meconium, significant positive correlations were observed among secondary oxidative metabolites of DEHP and DINCH in hair and meconium, suggesting that the primary metabolites in meconium come from hydrolysis of plasticizers in the fetus but most of the oxidative metabolites come from maternal-fetal transmission. The parent compound/metabolite ratios in infant hair showed a decreasing trend across pregnancy, suggesting in utero accumulation and deposition of plasticizers. To the best of our knowledge, this study is the first to report in utero exposure to both parent compounds and metabolites of plasticizers by using paired infant hair and meconium as noninvasive biomonitoring matrices and provides novel insights into the fetal biotransformation and accumulation of plasticizers across pregnancy.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Gravidez , Recém-Nascido , Feminino , Plastificantes , Mecônio/metabolismo , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Ácidos Ftálicos/metabolismo , Cabelo/metabolismo , Organofosfatos , Biotransformação , Ésteres/metabolismo , Exposição Ambiental/análise
4.
ACS Appl Bio Mater ; 7(3): 1513-1525, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38354359

RESUMO

Skin is the body barrier that constrains the infiltration of particles and exogenous aggression, in which the hair follicle plays an important role. Recent studies have shown that small particles can penetrate the skin barrier and reach the hair follicle, making them a potential avenue for delivering hair growth-related substances. Interestingly, keratin-based microspheres are widely used as drug delivery carriers in various fields. In this current study, we pursue the effect of newly synthesized 3D spherical keratin particles on inducing hair growth in C57BL/6 male mice and in human hair follicle dermal papilla cells. The microspheres were created from partially sulfonated, water-soluble keratin. The keratin microspheres swelled in water to form spherical gels, which were used for further experiments. Following topical application for a period of 20 days, we observed a regrowth of hair in the previously depleted area on the dorsal part of the mice in the keratin microsphere group. This observation was accompanied by the regulation of hair-growth-related pathways as well as changes in markers associated with epidermal cells, keratin, and collagen. Interestingly, microsphere keratin treatment enhanced the cell proliferation and the expression of hair growth markers in dermal papilla cells. Based on our data, we propose that 3D spherical keratin has the potential to specifically target hair follicle growth and can be employed as a carrier for promoting hair growth-related agents.


Assuntos
Cabelo , Queratinas , Masculino , Camundongos , Humanos , Animais , Queratinas/metabolismo , Queratinas/farmacologia , Microesferas , Camundongos Endogâmicos C57BL , Cabelo/metabolismo , Água
5.
PLoS One ; 19(2): e0297080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408073

RESUMO

BACKGROUND: Hair loss/thinning is a common side effect of tamoxifen in estrogen receptor (ER) positive breast cancer therapy. Some nutraceuticals known to promote hair growth are avoided during breast cancer therapy for fear of phytoestrogenic activity. However, not all botanical ingredients have similarities to estrogens, and in fact, no information exists as to the true interaction of these ingredients with tamoxifen. Therefore, this study sought to ascertain the effect of nutraceuticals (+/- estrogen/tamoxifen), on proliferation of breast cancer cells and the relative expression of ERα/ß. METHODS: Kelp, Astaxanthin, Saw Palmetto, Tocotrienols, Maca, Horsetail, Resveratrol, Curcumin and Ashwagandha were assessed on proliferation of MCF7, T47D and BT483 breast cancer cell lines +/- 17ß-estradiol and tamoxifen. Each extract was analysed by high performance liquid chromatography (HPLC) prior to use. Cellular ERα and ERß expression was assessed by qRT-PCR and western blot. Changes in the cellular localisation of ERα:ERß and their ratio following incubation with the nutraceuticals was confirmed by immunocytochemistry. RESULTS: Estradiol stimulated DNA synthesis in three different breast cancer cell lines: MCF7, T47D and BT483, which was inhibited by tamoxifen; this was mirrored by a specific ERa agonist in T47D and BT483 cells. Overall, nutraceuticals did not interfere with tamoxifen inhibition of estrogen; some even induced further inhibition when combined with tamoxifen. The ERα:ERß ratio was higher at mRNA and protein level in all cell lines. However, incubation with nutraceuticals induced a shift to higher ERß expression and a localization of ERs around the nuclear periphery. CONCLUSIONS: As ERα is the key driver of estrogen-dependent breast cancer, if nutraceuticals have a higher affinity for ERß they may offer a protective effect, particularly if they synergize and augment the actions of tamoxifen. Since ERß is the predominant ER in the hair follicle, further studies confirming whether nutraceuticals can shift the ratio towards ERß in hair follicle cells would support a role for them in hair growth. Although more research is needed to assess safety and efficacy, this promising data suggests the potential of nutraceuticals as adjuvant therapy for hair loss in breast cancer patients receiving endocrine therapy.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Células MCF-7 , Suplementos Nutricionais , Alopecia/tratamento farmacológico , Cabelo/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
6.
Adv Healthc Mater ; 13(8): e2303095, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38175177

RESUMO

Androgenetic alopecia (AGA) is a prevalent systemic disease caused by diverse factors, for which effective treatments are currently limited. Herein, the oleogel (OG) containing copper-curcumin (CuR) nanoparticles is developed, designated as CuRG, which is also combined with traditional naturopathic scraping (Gua Sha, SCR) as a multifunctional therapy for AGA. With the assistance of lipophilic OG and SCR, CuR can efficaciously penetrate the epidermal and dermal regions where most hair follicles (HFs) reside, thereby releasing curcumin (CR) and copper ions (Cu2+) subcutaneously to facilitate hair regeneration. Concomitantly, the mechanical stimulation induced by SCR promotes the formation of new blood vessels, which is conducive to reshaping the microenvironment of HFs. This study validates that the combination of CuRG and SCR is capable of systematically interfering with different pathological processes, ranging from improvement of perifollicular microenvironment (oxidative stress and insufficient vascularization), regulation of inflammatory responses to degradation of androgen receptor, thus potentiating hair growth. Compared with minoxidil, a widely used clinical drug for AGA therapy, the designed synergistic system displays augmented hair regeneration in the AGA mouse model.


Assuntos
Cobre , Curcumina , Animais , Camundongos , Cobre/farmacologia , Curcumina/farmacologia , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Alopecia/patologia , Cabelo/metabolismo , Compostos Orgânicos
7.
Toxicol Appl Pharmacol ; 483: 116809, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211931

RESUMO

Xanthohumol (XN) is a prominent prenylated flavonoid present in the hop plant (Humulus lupulus L.). Despite undoubted pro-healing properties of hop plant, there is still a need for clinical investigations confirming these effects as well as the underlying molecular mechanisms. The present study was designed to (1) establish the role of XN in non-invasive inflammation induced by chemical damage to zebrafish hair cells, (2) clarify if it influences cell injury severity, neutrophil migration, macrophage activation, cell regeneration, and (3) find out whether it modulates the gene expression profile of chosen immune and stress response markers. All experiments were performed on 3 dpf zebrafish larvae. After fertilization the embryos were transferred to appropriate XN solutions (0.1 µM, 0.3 µM and 0.5 µM). The 40 min 10 µM CuSO4 exposure evoked severe damage to posterior lateral line hair cells triggering a robust acute inflammatory response. Four readouts were selected as the indicators of XN role in the process of inflammation: 1) hair cell death, 2) neutrophil migration towards damaged hair cells, 3) macrophage activation and recruitment to damaged hair cells, 4) hair cell regeneration. The assessments involved in vivo confocal microscopy imaging and qPCR based molecular analysis. It was demonstrated that XN (1) influences death pathway of damaged hair cells by redirecting their severe necrotic phenotype into apoptotic one, (2) impacts the immune response via regulating neutrophil migration, macrophage recruitment and activation (3) modulates gene expression of immune system markers and (4) accelerates hair cell regeneration.


Assuntos
Humulus , Propiofenonas , Animais , Humulus/química , Humulus/metabolismo , Peixe-Zebra/metabolismo , Flavonoides/química , Propiofenonas/toxicidade , Propiofenonas/química , Propiofenonas/metabolismo , Imunidade Inata , Inflamação/induzido quimicamente , Cabelo/metabolismo
8.
Biochem Biophys Res Commun ; 699: 149551, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38277730

RESUMO

V-ATPase is an ATP hydrolysis-driven proton pump involved in the acidification of intracellular organelles and systemic acid-base homeostasis through H+ secretion in the renal collecting ducts. V-ATPase dysfunction is associated with hereditary distal renal tubular acidosis (dRTA). ATP6V1B1 encodes the B1 subunit of V-ATPase that is integral to ATP hydrolysis and subsequent H+ transport. Patients with pathogenic ATP6V1B1 mutations often exhibit an early onset of sensorineural hearing loss. However, the mechanisms underlying this association remain unclear. We employed morpholino oligonucleotide-mediated knockdown and CRISPR/Cas9 gene editing to generate Atp6v1ba-deficient (atp6v1ba-/-) zebrafish as an ortholog model for ATP6V1B1. The atp6v1ba-/- zebrafish exhibited systemic acidosis and significantly smaller otoliths compared to wild-type siblings. Moreover, deficiency in Atp6v1ba led to degeneration of inner ear hair cells, with ultrastructural changes indicative of autophagy. Our findings indicate a critical role of ATP6V1B1 in regulating lysosomal pH and autophagy in hair cells, and the results provide insights into the pathophysiology of sensorineural hearing loss in dRTA. Furthermore, this study demonstrates that the atp6v1ba-/- zebrafish model is a valuable tool for further investigation into disease mechanisms and potential therapies for acidosis-related hearing impairment.


Assuntos
Acidose Tubular Renal , Acidose , Perda Auditiva Neurossensorial , Compostos Organometálicos , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Peixe-Zebra/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Mutação , Acidose Tubular Renal/genética , Células Ciliadas Auditivas/patologia , Concentração de Íons de Hidrogênio , Cabelo/metabolismo , Trifosfato de Adenosina
9.
J Cosmet Dermatol ; 23(3): 986-998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37905348

RESUMO

BACKGROUND: Hair loss occurs due to various biological and environmental causes, which can have psychosocial consequences. The Wnt/ß-catenin signaling is well-known for its role in hair growth and regeneration, as it induces the proliferation and differentiation of hair cells. When the leucine-rich G protein-coupled receptor 5 (Lgr5) interacts with the R-spondins, the frizzled receptor (FZD), a Wnt receptor, becomes stabilized, resulting in an increased ß-catenin activity. AIM: We investigated whether the octapeptide that binds to Lgr5 enhances proliferation and differentiation of human primary hair cells through the activation of Wnt/ß-catenin signaling. METHODS: The binding affinity of the octapeptide to Lgr5 was evaluated using surface plasmon resonance (SPR). We confirmed changes in proliferation and related factors like ß-catenin activation and growth factors (GFs) expression in human hair follicle dermal papilla cells (HHFDPCs). Additionally, we observed the proliferation and the expression of differentiation markers in human hair follicle outer root sheath cells (HHFORSCs), human hair follicle germinal matrix cells (HHFGMCs), and human hair follicle stem cells (HHFSCs). We used three-dimensional HHFDPC spheroid culture treated with dihydrotestosterone (DHT) to create in vitro conditions that mimic androgenetic alopecia, and we studied the effects of octapeptide on Wnt expression and HHFSC differentiation. RESULTS: The binding of the octapeptide to Lgr5 was confirmed using SPR analysis. In HHFDPCs, treatment with octapeptide resulted in a concentration-dependent increase in proliferation. We also observed increased nuclear translocation of ß-catenin and increased expression of its downstream targets. HHFDPCs treated with octapeptide exhibited increased expression of growth factors and phosphorylation of Akt and ERK. In addition, we confirmed that octapeptide increased proliferation and induced differentiation in HHFORSCs, HHFGMCs, and HHFSCs. Under the HHFDPC spheroid culture conditions, we found that octapeptide restored the inhibition of Wnt-5a and Wnt-10b expressions by DHT. In HHFSCs treated with HHFDPC spheroid culture media, we observed that octapeptide recovered the inhibition of differentiation by DHT. CONCLUSION: We found that octapeptides activated the Wnt/ß-catenin signaling and induced the proliferation and differentiation of human primary hair cells by acting as an exogenous ligand for Lgr5. In addition, octapeptides recovered inhibited hair regeneration characters by DHT in androgenetic alopecia-mimic in vitro model. These findings suggest that octapeptides may be a promising therapeutic option for treating hair loss.


Assuntos
Folículo Piloso , beta Catenina , Humanos , beta Catenina/metabolismo , Cabelo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt , Di-Hidrotestosterona/metabolismo , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Proliferação de Células
10.
J Invest Dermatol ; 144(2): 284-295.e16, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37716648

RESUMO

Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss-of-function variants in desmosomal genes leads to a variety of skin- and heart-related phenotypes. In this study, we report TUFT1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair, and mild palmoplantar keratoderma but without a cardiac phenotype, we identified a homozygous splice-site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of TUFT1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that TUFT1 is positioned within the desmosome and that its location is dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1-knockout mouse model mimicked the patients' phenotypes. Altogether, this study reveals TUFT1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair, and palmoplantar keratoderma.


Assuntos
Doenças do Cabelo , Ceratodermia Palmar e Plantar , Anormalidades da Pele , Animais , Humanos , Camundongos , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmossomos/metabolismo , Cabelo/metabolismo , Doenças do Cabelo/genética , Doenças do Cabelo/metabolismo , Ceratodermia Palmar e Plantar/genética , Ceratodermia Palmar e Plantar/metabolismo , Pele/metabolismo , Anormalidades da Pele/metabolismo
11.
Hormones (Athens) ; 23(1): 113-120, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37792214

RESUMO

PURPOSE: The role of endocannabinoids (ECs) in the regulation of the hypothalamic-pituitary-adrenocortical axis has already been studied; however, data are scarce in humans. The aim of our study was to analyze EC [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)] and cortisol (F) levels in hair samples of patients with adrenal incidentalomas (AIs) in comparison with those found in controls and assess their association with the hormone profile. METHODS: Forty-four patients with AIs [32 with non-functioning AIs (NFAIs) and 12 with possible autonomous secretion (PACS)] and 44 controls were recruited. Basal and post-1 mg overnight dexamethasone suppression test (ODST) F, adrenocorticotropic hormone, dehydroepiandrosterone sulfate, and 24-h urinary free cortisol were analyzed. After hair collection, EC and F levels were measured by liquid chromatography tandem-mass spectrometry. RESULTS: There was no difference between the groups regarding age, sex, and metabolic status. Significantly decreased hair AEA and 2-AG levels were found in patients with AIs compared to controls (p < 0.001 and p = 0.002, respectively) as well as between NFAI or PACS and controls (p < 0.001 or p = 0.002 and p = 0.038 or p = 0.02, respectively). Among the AI patients, EC levels tended to be lower in the PACS group. AEA hair levels were negatively correlated with F levels post-1 mg ODST (rs = -0.257, p = 0.033). We found no significant difference comparing hair F between the groups. CONCLUSION: Our findings suggest that hair EC measurement could be a potential biomarker in the evaluation of patients with AIs, whereas hair F analysis is not a useful diagnostic test for mild hypercortisolemia.


Assuntos
Neoplasias das Glândulas Suprarrenais , Hidrocortisona , Humanos , Hidrocortisona/metabolismo , Neoplasias das Glândulas Suprarrenais/metabolismo , Estudos de Casos e Controles , Endocanabinoides , Dexametasona , Cabelo/metabolismo
12.
J Proteome Res ; 23(1): 409-417, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38009783

RESUMO

A fast and sensitive direct extraction (DE) method developed in our group can efficiently extract proteins in 30 min from a 5 cm-long hair strand. Previously, we coupled DE to downstream analysis using gel electrophoresis followed by in-gel digestion, which can be time-consuming. In searching for a better alternative, we found that a combination of DE with a bead-based method (SP3) can lead to significant improvements in protein discovery in human hair. Since SP3 is designed for general applications, we optimized it to process hair proteins following DE and compared it to several other in-solution digestion methods. Of particular concern are genetically variant peptides (GVPs), which can be used for human identification in forensic analysis. Here, we demonstrated improved GVP discovery with the DE and SP3 workflow, which was 3 times faster than the previous in-gel digestion method and required significantly less instrument time depending on the number of gel slices processed. Additionally, it led to an increased number of identified proteins and GVPs. Among the tested in-solution digestion methods, DE combined with SP3 showed the highest sequence coverage, with higher abundances of the identified peptides. This provides a significantly enhanced means for identifying proteins and GVPs in human hair.


Assuntos
Peptídeos , Proteínas , Humanos , Proteínas/análise , Peptídeos/análise , Eletroforese , Cabelo/química , Cabelo/metabolismo
13.
Exp Dermatol ; 33(1): e14990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38071436

RESUMO

Stress has been considered as a potential trigger for hair loss through the neuroendocrine-hair follicle (HF) axis. Neurotensin (NTS), a neuropeptide, is known to be dysregulated in the inflammatory-associated skin diseases. However, the precise role of NTS in stress-induced hair loss is unclear. To investigate the function and potential mechanisms of NTS in stress-induced hair growth inhibition, we initially detected the expression of neurotensin receptor (Ntsr) and NTS in the skin tissues of stressed mice by RNA-sequencing and ELISA. We found chronic restraint stress (CRS) significantly decreased the expression of both NTS and Ntsr in the skin tissues of mice. Intracutaneous injection of NTS effectively counteracted CRS-induced inhibition of hair growth in mice. Furthermore, NTS regulated a total of 1093 genes expression in human dermal papilla cells (HDPC), with 591 genes being up-regulated and 502 genes being down-regulated. GO analysis showed DNA replication, cell cycle, integral component of plasma membrane and angiogenesis-associated genes were significantly regulated by NTS. KEGG enrichment demonstrated that NTS also regulated genes related to the Hippo signalling pathway, axon guidance, cytokine-cytokine receptor interaction and Wnt signalling pathway in HDPC. Our results not only uncovered the potential effects of NTS on stress-induced hair growth inhibition but also provided an understanding of the mechanisms at the gene transcriptional level.


Assuntos
Cabelo , Neurotensina , Animais , Humanos , Camundongos , Alopecia/metabolismo , Folículo Piloso/metabolismo , Neuropeptídeos/metabolismo , Neurotensina/genética , Neurotensina/metabolismo , Neurotensina/farmacologia , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo
14.
J Psychosom Res ; 176: 111566, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100896

RESUMO

BACKGROUND: Stress is an important predictor of long-term conditions. We examine whether hair cortisol (a biomarker of stress) is associated with incidence and accumulation of multiple long-term conditions (MLTC). METHODS: We included data from 4295 individuals aged ≥50 years within the English Longitudinal Study of Ageing dataset with data on hair cortisol, sociodemographic and health behaviour variables. Cox proportional hazards models were used to quantify the association between hair cortisol at baseline and accumulation of MLTC between 2012/2013 and 2018/2019, both for individuals with and without MLTC at baseline. RESULTS: Our cohort included 1458 (34.0%) individuals who accumulated MLTC between 2012/2013 and 2018/2019. The proportion of individuals with zero, 1, and ≥ 2 conditions at baseline who accumulated MLTC were 12.0% (n = 127), 40.4% (n = 520), and 41.7% (n = 811), respectively. Higher cortisol levels were associated with higher risk of accumulation of MLTC in both unadjusted [HR:1.15(1.05-1.25)] and models adjusted for sociodemographic and health behaviours [HR:1.12(1.02-1.22)]. For individuals without MLTC at baseline, higher cortisol levels were significantly associated with higher risk of developing MLTC in unadjusted [HR: 1.20(1.05-1.36)] and adjusted models [HR: 1.16(1.02-1.32)]. CONCLUSION: The study provides the first evidence of the role of stress in the development and accumulation of MLTC. This modifiable risk factor could be targeted to reduce the risk of MLTC. However, further work is needed to better understand the mechanisms and pathways that link stress and accumulation of MLTC.


Assuntos
Cabelo , Hidrocortisona , Humanos , Estudos de Coortes , Estudos Longitudinais , Hidrocortisona/metabolismo , Cabelo/metabolismo , Envelhecimento
15.
Biomed Pharmacother ; 170: 115913, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154270

RESUMO

The plant Justicia procumbens is traditionally used in Asia to treat fever, cough, and pain. Previous studies have reported its anticancer and anti-asthmatic properties. However, its potential for preventing androgenic alopecia (AGA) has not yet been reported. AGA is a widespread hair loss condition primarily caused by male hormones. In this study, we examined the hair loss-preventing effects of an aqueous extract of J. procumbens (JPAE) using human hair follicle dermal papilla cell (HFDPC) and a mouse model of testosterone-induced AGA. JPAE treatment increased HFDPC proliferation by activating the Wnt/ß-catenin signaling pathway. Additionally, JPAE increased the expression of Wnt targets, such as cyclin D1 and VEGF, by promoting the translocation of ß-catenin to the nucleus. Administration of JPAE reduced hair loss, increased hair thickness, and enhanced hair shine in an AGA mouse model. Furthermore, it increased the expression of p-GSK-3ß and ß-catenin in the dorsal skin of the mice. These findings imply that JPAE promotes the proliferation of HFDPC and prevents hair loss in an AGA mouse model. JPAE can therefore be used as a functional food and natural treatment option for AGA to prevent hair loss.


Assuntos
Justicia , beta Catenina , Humanos , Camundongos , Animais , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Alopecia/induzido quimicamente , Alopecia/prevenção & controle , Alopecia/metabolismo , Cabelo/metabolismo , Via de Sinalização Wnt
16.
Biomed Res Int ; 2023: 4191999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143588

RESUMO

The Kir4.1 channel, an inwardly rectifying potassium ion (K+) channel, is located in the hair cells of the organ of Corti as well as the intermediate cells of the stria vascularis. The Kir4.1 channel has a crucial role in the generation of endolymphatic potential and maintenance of the resting membrane potential. However, the role and functions of the Kir4.1 channel in the progenitor remain undescribed. To observe the role of Kir4.1 in the progenitor treated with the one-shot ototoxic drugs (kanamycin and furosemide), we set the proper condition in culturing Immortomouse-derived HEI-OC1 cells to express the potassium-related channels well. And also, that was reproduced in mice experiments to show the important role of Kir4.1 in the survival of hair cells after treating the ototoxicity drugs. In our results, when kanamycin and furosemide drugs were cotreated with HEI-OC1 cells, the Kir4.1 channel did not change, but the expression levels of the NKCC1 cotransporter and KCNQ4 channel are decreased. This shows that inward and outward channels were blocked by the two drugs (kanamycin and furosemide). However, noteworthy here is that the expression level of Kir4.1 channel increased when kanamycin was treated alone. This shows that Kir4.1, an inwardly rectifying potassium channel, acts as an outward channel in place of the corresponding channel when the KCNQ4 channel, an outward channel, is blocked. These results suggest that the Kir4.1 channel has a role in maintaining K+ homeostasis in supporting cells, with K+ concentration compensator when the NKCC1 cotransporter and Kv7.4 (KCNQ4) channels are deficient.


Assuntos
Ototoxicidade , Canais de Potássio Corretores do Fluxo de Internalização , Camundongos , Animais , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Aminoglicosídeos/toxicidade , Membro 2 da Família 12 de Carreador de Soluto , Furosemida/farmacologia , Antibacterianos , Canamicina , Potássio/metabolismo , Cabelo/metabolismo
17.
Dev Psychobiol ; 65(8): e22437, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010308

RESUMO

Cortisol expression has been demonstrated to have variation across development in rhesus macaques (Macaca mulatta). There exists contradictory evidence for the nature of this change, and age at which it occurs, across biological sample types. Consequently, we lack a cohesive understanding for cortisol concentrations across the development of a major human health translational model. We examined hair cortisol concentrations over the first 3 years of life for 49 mother-reared infant macaques from mixed-sex outdoor units at the California National Primate Research Center. For 48 of these subjects at infancy, 1 year, and 2 years, we obtained plasma cortisol samples for response to a stressor, adjustment to prolonged stress, and response to dexamethasone injection. Hair cortisol concentrations decreased dramatically between 3 and 10 months, followed by relative stability up to the final sampling event at around 34 months of age. Plasma cortisol showed within-year consistency, and consistency between infancy and year 1. We document variability in the infant plasma cortisol samples, especially in percent change between samples 1 and 2. Our plasma cortisol results indicate that infants possess the physiological capacity to effectively inhibit the release of cortisol when stimulated, as effectively as later responses in juveniles. Age-related changes in hair cortisol parallel findings indicating a large decline in the weeks following postparturation.


Assuntos
Cabelo , Hidrocortisona , Animais , Feminino , Humanos , Lactente , Macaca mulatta/fisiologia , Hidrocortisona/metabolismo , Cabelo/metabolismo , Mães
18.
Rejuvenation Res ; 26(6): 242-252, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933912

RESUMO

DNA damage represents one of the cell intrinsic causes of stem cell aging, which leads to differentiation-induced removal of damaged stem cells in skin and blood. Dietary restriction (DR) retards aging across various species, including several strains of laboratory mice. Whether, DR has the potential to ameliorate DNA damage-driven stem cell exhaustion remains incompletely understood. In this study, we show that DR strongly extends the time to hair graying in response to γ-irradiation (ionizing radiation [IR])-induced DNA damage of C57BL/6 J mice. The study shows that DR prolongs resting phase of hair follicles. DR-mediated prolongation of hair follicle stem cell (HFSC) quiescence blocks hair growth and prevents the depletion of HFSCs and ckit+ melanoblasts in response to IR. However, prolongation of HFSC quiescence also correlates with a suppression of DNA repair and cannot prevent melanoblast loss and hair graying in the long run, when hair cycling is reinitiated even after extended periods of time. Altogether, these results support a model indicating that nutrient deprivation can delay but not heal DNA damage-driven extinction of melanoblasts by stalling HFSCs in a prolonged state of quiescence coupled with inhibition of DNA repair. Disconnecting these two types of responses to DR could have the potential to delay stem cell aging.


Assuntos
Folículo Piloso , Cabelo , Camundongos , Animais , Folículo Piloso/metabolismo , Camundongos Endogâmicos C57BL , Cabelo/metabolismo , Pele , Células-Tronco/metabolismo
19.
Environ Sci Technol ; 57(48): 19202-19213, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37931007

RESUMO

We assessed phthalate-hormone associations in 382 pregnant women of the new-generation SEPAGES cohort (2014-2017, France) using improved exposure and outcome assessments. Metabolites from seven phthalate compounds and the replacement di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (≈21 samples/trimester). Metabolites from five steroid hormones were measured in maternal hair samples collected at delivery, reflecting cumulative levels over the previous weeks to months. Adjusted linear regression and Bayesian weighted quantile sum (BWQS) mixture models were performed. Each doubling in third-trimester urinary mono-benzyl phthalate (MBzP) concentrations was associated with an average increase of 13.3% (95% CI: 2.65, 24.9) for ∑cortisol, 10.0% (95% CI: 0.26, 20.7) for ∑cortisone, 17.3% (95% CI: 1.67, 35.4) for 11-dehydrocorticosterone, and 16.2% (95% CI: 2.20, 32.1) for testosterone, together with a suggestive 10.5% (95% CI: -1.57, 24.1) increase in progesterone levels. Each doubling in second-trimester urinary di-isononyl phthalate (DiNP) concentrations was inversely associated with testosterone levels (-11.6%; 95% CI: -21.6, -0.31). For most hormones, a nonsignificant trend toward a positive phthalate mixture effect was observed in the third but not in the second trimester. Our study showed that exposure to some phthalate metabolites, especially MBzP, may affect adrenal and reproductive hormone levels during pregnancy.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Teorema de Bayes , Ácidos Ftálicos/metabolismo , Esteroides , Testosterona , Cabelo/metabolismo , Exposição Ambiental , Exposição Materna
20.
Sci Rep ; 13(1): 16504, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783752

RESUMO

Stress can be one of the leading causes of hair loss. Stress related hormones, glucocorticoids (GCs), secretion by hair follicle have been mentioned in literature and proven to exert an inhibitory effect on hair follicle cells growth by modulating the expression of target genes related to cell proliferation and cycling. The gene modulating effect of the synthetic GC, dexamethasone (DEX), in human dermal papilla (DP) cells has been outlined in this study by mediating a contradictory effect on the expression of secreted frizzled related protein 2 (SFRP2) and SFRP3. The SFRP2 and SFRP3 possess a regulating effect on wnt signaling pathway. Their structural similarities to the cysteine-rich-domain of the frizzled receptors (FZD) allow their binding to the wnt ligands causing the blocking of the wnt ligands-receptors complex. The SFRP family members have been known as inhibitors of the wnt signaling modulating the proliferation and development of various cells. In hair follicle cells, SFRP2 activity has been reported positively on the proliferation of keratinocytes. However, the SFRP3 effect hasn't been well addressed. Under stress, the investigation of the mRNA and protein expressions of SFRP members in human DP cells revealed opposite expressions where SFRP2 decreased while SFRP3 increased by DEX. The proliferation rate of hair keratinocytes outer root sheath was detected via immunofluorescence highlighting the stimulatory effect of SFRP2 and the inhibitory effect of SFRP3. Here, we sought to determine the effect of GC agonist on SFRPs expression and their effect on hair follicle growth.


Assuntos
Folículo Piloso , Cabelo , Humanos , Folículo Piloso/metabolismo , Cabelo/metabolismo , Queratinócitos/metabolismo , Via de Sinalização Wnt/genética , Dexametasona/farmacologia , Dexametasona/metabolismo , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...